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Abstract—Cardiovascular disease (CVD) is a serious illness
affecting millions world-wide and is the leading cause of death
in the US. Recent years, however, have seen tremendous growth in
the area of personalized medicine, a field of medicine that places
the patient at the center of the medical decision-making and
treatment process. Many CVD-focused personalized medicine
innovations focus on genetic biomarkers, which provide person-
specific CVD insights at the genetic level, but do not focus on
the practical steps a patient could take to mitigate their risk of
CVD development. In this work we propose longitudinal inverse
classification, a recommendation framework that provides per-
sonalized lifestyle recommendations that minimize the predicted
probability of CVD risk. Our framework takes into account
historical CVD risk, as well as other patient characteristics, to
provide recommendations. Our experiments show that earlier
adoption of the recommendations elicited from our framework
produce significant CVD risk reduction.

I. INTRODUCTION

Cardiovascular disease (CVD) is a serious illness that affects
millions in both the United States and across the world. In
2016, CVD was the leading cause of death of in the US,
responsible for more than 840,000 deaths [1], thus accounting
for one in three of all US deaths [2]. Moreover, over 1 million
individuals experienced a CVD event in 2019. Comprehen-
sively, these statistics paint a troubling picture of the current
state of cardiovascular health.

Encouragingly, however, over the past four to five decades
cardiovascular disease mortality has been on the decline [3].
This observed decline is attributable to many advances in
modern medicine, ranging from surgical bypass innovations
to preventive care and education. Most recently, however,
researchers have begun to worry that CVD mortality may
be plateauing and the decline even reversing among certain
populations [3].

Advances in precision medicine may be the key to encour-
aging continued CVD mortality reduction. Precision medicine
methodologies operate by placing the individual at the center
of the medical decision-making process to find the interven-
tions or treatments that maximize the probability of a good
outcome. Therefore, these methodologies consider person-
specific characteristics that have a bearing on the medical
issue at hand. Such characteristics may be incredibly fine-
grained, defined in terms of one’s genetic make-up, or more
course-grained, such as demographic information, and may

also include factors that pertain to one’s lifestyle, such as
exercise and eating habits.

A particularly promising stream of precision medicine re-
search is in the area of machine learning. Broadly speaking,
machine learning methods induce (i.e., train) a model that
learns a mapping from features (i.e., variables) to some out-
come of interest, either continuously valued (regression) or
discrete (classification) using historical data. In the context of
CVD precision medicine, the features represent patient charac-
teristics (demographics, lifestyle), which are mapped to CVD
outcome, and the historical data are historical medical records.
The trained model can then be used to make predictions as to
the disease outcome for new patients.

Trained machine learning models are incapable of providing
personalized (i.e., precision) recommendations that mitigate
the probability of developing the disease they’ve learned to
predict, however. In other words, machine learning models
are strictly diagnostic. To turn predictions into precision pre-
scriptions additional innovations are needed.

Inverse classification turns predictions into personalized
prescriptions by finding the instance-specific (patient-specific)
feature value perturbations that minimize the probability of
an undesirable classification. These perturbations correspond
to manipulations of the patient’s characteristics. Intuitively,
not all characteristics can be changed. For instance, it would
make little sense to perturb age or genetic characteristics
because the patient cannot change her age or genetics. On
the other hand, she can change her eating habits and exercise
levels. Therefore, perturbations are only made to lifestyle
or similarly manipulable feature values. The perturbations
are moderated by feasibility constraints that can be tailored
to the individual and are implemented to avoid infeasible
recommendations (e.g., run 1000 miles/day). Ultimately, the
perturbations obtained from application of inverse classifica-
tion represent personalized recommendations that optimally
minimized the probability (risk) of CVD.

In this work we propose a longitudinal inverse classification
approach to CVD risk minimization. Longitudinal, in this
context, indicates that we will observe the same patients over
several time periods. By devising a longitudinal approach to
the inverse classification problem we can observe how inverse
classification-elicited recommendations affect CVD risk over
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multiple, temporal periods. In other words, we can explore
how personalized recommendations adopted earlier vs. later
affect future CVD risk over several periods of time. The rec-
ommendations elicited from the proposed inverse classification
process will be in the form of lifestyle adjustments, such
as changes to diet and exercise. The proposed longitudinal
approach will also allow us to more realistically model CVD
development by taking into account past patient history.

Our innovations in the areas of CVD risk minimization, pre-
cision medicine, and inverse classification can be summarized
as follows: (1) We develop an updated inverse classification
framework to accommodate longitudinal data, thereby creating
a more realistic formulation that creates temporal linkages
between each observation period. (2) Using our proposed lon-
gitudinal inverse classification framework we show how early
adoption of the elicited precision recommendations continues
to lower CVD development probability during subsequent
periods. In other words, we show how lifestyle adjustments
made earlier continue to reduce CVD probability during later
observation periods. (3) We explore and solve an intermediary
“missing variable” problem that frequently arises when longi-
tudinal data are used. Namely, we propose and evaluate the use
of so-called “missing value estimators” that provide estimates
for features that are not measured during some time periods
in the longitudinal study.

The paper proceeds by first disclosing related work in
Section 2, followed by our longitudinal inverse classification
formulation in Section 3. Section 4 discloses our data, exper-
iments and results and Section 5 concludes the paper.

II. RELATED WORK

We decompose our discussion of related works according
to four categories: precision and personalized medicine, per-
sonalized medicine applied to CVD, machine learning with
longitudinal data, and inverse classification.

Personalized and precision medicine are relatively new
avenues of research that have been gaining popularity in
recent years. Personalized medicine differs from so-called
“traditional” forms of one-size-fits-all medicine by placing the
individual at the center of medical decision-making process to
find a medical course of action that is specific to the individual
[4]. Personalized medicine may operate at a very fine-grained
genetic level to discover new drugs [5], for instance, or more
course-grained demographic and lifestyle levels to prevent and
mitigate chronic diseases [6]. This study is concerned with the
latter, where we are attempting to mitigate the risk of CVD
development.

Personalized medicine research in the area of CVD is
somewhat understudied, particularly in regard to technologies
that have been deployed and are being used in practice
[7]. Nevertheless, recent years have witnessed a growth in
personalized medicine for CVD [8], much of which is focused
on genomic research with particular emphasis being placed
on the identification of biomarkers indicative of the disease
[8]–[11]. In contrast, this work focuses on the creation of a
framework that can immediately be used to make personalized

lifestyle recommendations that mitigate long-term CVD risk,
thus bridging the gap between traditional preventive lifestyle-
focused CVD research [1], [2] and personalized medicine.

Emergent data mining and machine learning research in-
volving longitudinal data is focused on methodologically
leveraging such data, as well as the specific domains in which
such methods can be employed. In [12] the authors explore
deep neural networks that, with minimal preprocessing, learn
a mapping from patients’ lab tests to over 130 diseases
(multi-task learning). In [13] unsupervised learning methods
are applied to longitudinal health data to learn a disease
progression model. The model can subsequently be used to
aid patients in making long-term treatment decisions. These
works exemplify the way in which models can be learned
to aid in predicting disease [12] and in forecasting disease
progression [13]. In this work we examine how (1) coupling
longitudinal data with predictive models can make disease risk
estimation more accurate and (2) how predictive models that
incorporate historical risk and past behavior can be used to
make recommendations that optimally minimize the likelihood
of developing a certain disease.

Inverse classification methods are varied in their approach
to finding optimal recommendations, either adopting a greedy
[14]–[17] or non-greedy formulation [18]–[21]. Past works
also vary in their implementation of constraints that lead
to more realistic recommendations, either being completely
unconstrained [14], [15], [17], or constrained [16], [18]–[21].
In this work, we adopt the formulation and framework related
by [20], [21] which accounts for (a) the features that can and
cannot be changed (e.g. age cannot be changed, but exercise
levels can), (b) varying degrees of change difficulty (feature-
specific costs) and (c) a restriction on the cumulative amount
of change (budget). As in [21], we implement a method that
avoids making greedy recommendations while still accounting
for (a), (b) and (c).

III. LONGITUDINAL INVERSE CLASSIFICATION

In this section we begin by providing some preliminary
notation followed by a definition and formulation of past
CVD risk estimators and a definition and formulation of so-
called missing feature value estimators, which are necessarily
incorporated into our formulation of a longitudinal inverse
classification framework.

A. Preliminaries

Let {(id(i)
v ,x

(i)
v , y

(i)
v+1)}nv

i=1 be a dataset of n instances,
where id

(i)
v is a value that uniquely identifies patient i, x(i)

v

denotes patient i’s feature vector, y(i)
v+1 ∈ {0, 1} is the known

CVD outcome of patient i with 1 indicating that the patient
developed CVD and 0 indicating that the patient did not
develop CVD. Furthermore, v = 1, . . . , V denotes the discrete
temporal unit in which the {x(i)

v }nv
i=1 patient characteristics

were measured. On the other hand, the outcome of interest
y

(i)
v+1 is observed at the next (i.e., immediately proceeding)

temporal period, hence the v + 1 notation. Note that, for the
sake of notational convenience, we assume that there is a way
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to determine {y(i)
v+1}

nv
i=1 when v = V . Furthermore, let fv(·)

denote a classifier induced on training data from visit (i.e.,
temporal period) v; f : Rnv×pv → [0, 1], where nv and
pv denote the number of instances and number of features
measured, respectively, at visit v. We assume that fv(·) is a
classification function that produces probability estimates of
CVD outcome, hence the bounded output domain of [0, 1].
This is not a limiting assumption since any classifier that does
not natively produce probability estimates can be “trained” to
produce such estimates using Platt Scaling [22].

In this setting, an assumption made about the longitudi-
nal datasets is that of instance continuity, where the same
instances are represented in each of the defined v = 1, . . . , V
datasets. In other words, given a set of numbers uniquely
identifying each instance in a dataset at visit v, denoted IDv ,
the following holds

IDv+1 = {id(i)
v+1}

nv+1

i=1 ⊆ IDv = {id(i)
v }

nv
i=1 : for v = 1, . . . , V.

(1)

The specification given in (1) allows us to follow the pro-
gression of individual instances over time. However, to insure
that the classification function induced on {x(i)

v }ni=1 learns a
consistent representation of the outcome, namely {y(i)

v }ni=1,
the instances who experience the outcome of interest at v are
removed from the v + 1, . . . , V datasets. In other words, the
following holds

{id(i)
v+1}

nv+1

i=1 ∩ {id
(i)
v |y(i)

v = 1}nv
i=1 = ∅ : for v = 1, . . . , V.

(2)

Let Fv denote the feature set at visit v and U, I,D de-
note index sets corresponding to certain feature categories.
The U index set denotes “unchangeable” features, such
as age and height that cannot be changed by the patient
and for which we cannot provide recommendations – e.g.,
FU = {age, height, . . . }. The D index set, conversely, denotes
features that can be changed “directly” and represent the
features for which we can provide recommendations. The
features include lifestyle attributes such as diet and exercise
– e.g., FD = {diet, exercise, . . . }. The I index set indicates
so-called “indirectly” changeable features. This set of fea-
tures correspond to those variables that cannot be changed
directly, but may change as a consequence to changes made
in the FD feature set. Such variables might include blood
pressure and blood glucose, among others – e.g., FI =
{blood pressure, blood glucose, . . . }.

Since the FI features change as a consequence of manip-
ulations made to the FD, which are the features we will
ultimately be making recommendations about (i.e., making
changes to), we wish to model this dependence explicitly.
However, the FI features also depend upon the FU , which will
remain static. Therefore, let H : R|U |+|D| → R|I| denote an
indirectly changeable feature estimator that takes the xU and
xD feature values as input and provides estimates estimates
for the xI feature values. Therefore, we can use H(·) to track
how changes made to xD influence the FI feature values. This
indirect feature value estimator will be substituted in place

of the xI feature values when we formulate our longitudinal
inverse classification framework in the proceeding subsection.

B. Historical Risk Estimates Features

Since we observe the same instances in the datasets speci-
fied over the v = 1, . . . , V visits, we can also observe how the
outcome of interest temporally develops. Moreover, we can
induce models that take into account outcome development
(i.e., disease progression) when learning a mapping to the
outcome of interest.

To induce such models some notion of outcome develop-
ment (i.e., progression) must exist somewhere in the data. Ini-
tially, however, the datasets are temporally “unlinked”. In other
words no connection exists to link a patient’s observed features
values at an earlier time to those at later time. A naive way to
create a temporal link would be to carry-forward a patient’s
observed feature values at each of the v′ = 1, . . . , v − 1 time
periods and add them as features in the v period. This would,
of course, create increasingly large feature vectors and is not
practical.1 Therefore, we propose using CVD risk estimates –
the predicted probability of CVD occurring – as features in
“future” datasets. The addition of such features act as temporal
links between previous datasets and future datasets, providing
a notion of how likely an instance was to develop CVD
during previous visits, thus providing a more realistic picture
of outcome development. Furthermore, CVD risk estimates are
represented as single values and are therefore more practical
to use than the aforementioned naive procedure.

To formalize this notion, let

risk(i)
v = fv(x(i)

v ) (3)

denote an estimate of risk, obtained from classification func-
tion fv(·) at visit v, for patient id(i)

v having feature values x(i)
v .

To create a vector of past risk, corresponding to an arbitrary
number of past visits, we can write

¨risk
(i)

v = (fv−(v−1)(x
(i)
v−(v−1)), fv−(v−2)(x

(i)
v−(v−2)), . . . ,

(4)

fv−1(x
(i)
v−1)).

Then, for each subsequent temporal period v′ = v+1, . . . , V

we construct a dataset {(id(i)
v′ , ẍ

(i)
v′ , y

(i)
v′+1)}nv′

i=1, where ẍ
(i)
v′ =(

x
(i)
v′ , ¨risk

(i)

v′−1

)
. A simple example of this process, for a

single risk estimate, is illustrated in Figure 1.
Correspondingly, classifiers f̈v′(·) : for v′ = v + 1, . . . , V

can be induced on the risk estimate-containing datasets.

C. Missing Feature Estimators

One issue with longitudinal data is that features measured
during earlier time periods may not be measured at subsequent
periods. This presents a slight problem in the context of inverse
classification because we would like to induce classifiers on
the same set of features from one time period to the next.

1We do, however, compare to this naive temporal linkage strategy in our
experiments.
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v
Fig. 1: An illustration of the addition of past risk estimates as features in future datasets, using estimates from a single period
in time only. The risk estimate features are illustrated in red.

More importantly, we would like to optimize over the same
set of FD features at each time period, observing how such
optimization effects risk estimates in the future; thus we
require that classifier induction take place on the same set
of FD features.

Therefore, we propose to use so-called missing feature-
value estimators to estimate the missing feature values at
future time periods. Such estimators will be induced using the
known features at visit v to induce classifiers or regressors,
depending upon whether the missing feature is binary or
continuous. Therefore, we will define the full set of features
F at visit v = 1 to ensure there is at least one time period
from which we can always estimate future feature values.
Using these estimators, we will estimate the instances’ missing
feature values at visit v. Our proposition to use such estimators
is explored in the experiments section.

To formalize this notion, let Fv=1 denote the feature set
for the first time period in the longitudinal study. With this
in mind, the following relation holds for the data in our
longitudinal context:

{Fv=ṽ ⊆ Fv=1 : ṽ = 2, . . . , V }. (5)

The specification in (5) indicates that the data at visit v = 1
is sufficiently capable of providing estimates for the missing
feature values at any subsequent time period because the
features used at all future time periods are subsets or proper
subsets (indicating no missing features) of the features defined
at v = 1.

With this in mind, let Mv denote the set of missing
features at visit v, where Mv = {Fv=1 \ Fv}. Permit the
instances’ subvectors at v = 1 to be indexed using Mv ,
i.e., {x(i)

Mv,v=1}
nv=1
i=1 . Then, we define the estimation of missing

features, using missing feature-value estimators, as follows:

x(i)
m,v = εm(x(i)

v ) : for m ∈Mv (6)

where εm(·) denotes a classifier or regressor induced on
{x(i)

Fv,v=1}
nv=1
i=1 to learn the mapping to each m ∈ Mv ,

i.e., εm : {x(i)
Fv,v=1}

nv=1
i=1 → {x

(i)
m,v=1}

nv=1
i=1 .

Subsequently, let

x̌(i)
v =

(
ẍ(i)
v ,
(
x(i)
m,v

)
m∈Mv

)
(7)

where x̌
(i)
v indicates an instance at visit v composed of the

original feature values, missing feature values, and historical
risk estimates. Note that we can now refer to x̌

(i)
v using the

index sets U, I,D defined in a previous subsection.
Similarly, we can induce classifiers f̌ṽ(·) : for ṽ =

2, . . . , V on data containing both past risk estimates and
missing feature-value estimates.

D. Inverse Classification Formulation

With the discussion of past risk estimate and missing
feature-values resolved, we can formulate our longitudinal
inverse classification framework as:

min
x̌D,v

f̌v(x̌U,v, H(x̌U,v, x̌D,v), x̌D,v) (8)

s.t. Cv(x̌D,v − ¯̌xD,v) ≤ Bv

lj,v ≤ x̌j,v ≤ uj,v, for j ∈ D,

where C(z) =
∑

j∈D c+
j (zj)+ + c−j (zj)−, such that (z)+ =

max{0, z} and (z)− = max{0,−z}, is a cost function that
measures the deviation of the directly changeable feature
values x̌D,v from their original values ¯̌xD,v and applies a
user-specified cost cj : j ∈ D to these deviations. The costs
cj allow for a patient to specify which feature values they
would prefer to change (e.g., willing to exercise more than
a change to diet). These cost-changes are summed together
and subjected to a budget constraint Bv that controls the
extent of changes recommended, thus avoiding over-radical
recommendations (e.g., exercise 1000 hours in a week) and
further allows patients and clinicians to express preferences.
The lj,v(uj,v) : j ∈ D are lower (upper) bounds that ensure a
recommendation makes sense in the real world – e.g., prevents
negative dietary intake from being recommended. Note that in
(8) H(x̌U,v, x̌D,v) is used instead of x̌I,v to account for how
changes made to the directly changeable features affect the
indirectly changeable features.

IV. EXPERIMENTS AND RESULTS

In this section we propose and execute several experiments
that assess the viability of our proposed use of past risk
estimates, missing feature value estimators, and our specified
longitudinal inverse classification framework disclosed in (8)
in being able to reduce CVD risk.
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To such an end, we first disclose our proposed experiments
and subsequently describe our CVD data. Next, we provide
some details on the specific design choices made for our classi-
fier, optimizer, and indirect feature value estimator. Following
these disclosures, we report and discuss the results of our
experiments.

A. Evaluation Specifics

1) Experiments: We propose the following three experi-
ments to assess the viability of our proposed methods and
corresponding inverse classification framework: (1) To assess
the viability of our proposed use of missing feature value
estimators we compare the performance of various classifiers
and regressors to that of a simple carry-forward procedure
(baseline). The carry-forward procedure simply entails im-
puting the missing feature values using the instances’ known
feature values at v = 1. In other words, the values are carried
forward from v = 1 to v. (2) We explore our proposed use
of previous risk estimates as features in subsequent visits
by inducing classifiers on data containing such estimates,
inducing classifiers on data containing carried-forward past-
visit instance feature vectors, and comparing the predictive
performance between the two methods. The carry-forward
procedure replaces our original definition of risk in (4) by
(x

(i)
v−(v−1), . . . ,x

(i)
v−1,x

(i)
v ). (3) We examine the effects of

applying our longitudinal inverse classification procedure to
different temporal observation periods on future CVD risk.
Particularly, we examine the effect of a single application of
inverse classification applied early vs repeated applications of
inverse classification on predicted CVD risk observed in future
periods.

2) Dataset Description: To perform the experiments out-
lined in the previous subsection we use ARIC (atherosclerosis
risk in communities study) data, a freely available dataset (sub-
ject to approval) from BioLINCC. Derivation of longitudinal
data from this study produced V = 3 visit datasets having
the statistics outlined in Table I, with visit four being used
to define the CVD outcome (y) associated with the third visit
(v = 3). The features defined in v = 1, along with additional

Dataset Instances Feats/Missing yv+1 = 1
v = 1 12223 122/0 232
v = 2 11057 98/24 249
v = 3 9883 74/48 231

TABLE I: Dataset descriptors.

dataset details, such as the FU ,FI ,FD features can be found
in the Appendix section at the end of this work.

3) Classifier, Optimizer, and Indirect Feature Value Esti-
mator: Our longitudinal inverse classification framework dis-
closed in (8) can be optimized by applying various gradient de-
scent methods if f̌v(·) is differentiable and has an L-Lipschitz
continuous gradient. Otherwise, various heuristics such as
genetic algorithms, simulated annealing, etc. can be applied.
In our inverse classification experiments we use support vector
machines (SVM) for f̌v(·), which is both differentiable and has
an L-Lipschitz continuous gradient. Thus, we use projected

gradient descent (PGD) [23], [24] to optimize the objective
function in (8) to obtain recommendations. We elect to use
kernel regression as our indirect feature estimator since it is
also differentiable and provided good predictive performance
experimentally.

B. Experiment 1: Missing Feature Estimators

To justify our use of missing feature-value estimators, we
select three known features at v = 2 at random and treat
them as if they are missing. Subsequently, we induce missing
feature-value estimators with v = 1 data, using the remaining
known features at v = 2 (i.e., sans the three randomly selected
features). We then estimate the three features at v = 2
using the induced estimators and derive predictive performance
measures by comparing the estimates to the actual values
(AUC for categorical features and MSE for continuous). As
stated during our description of this experiment, we compare
the estimators to a “carry-forward” procedure. The results of
this experiment are disclosed in Table II.

aaaaaaa
Method

Feat/type
Alcohol/cont Statin Use/bin Hematocrit/cont

Carry 50.55 .579 7.55
RBF SVM 47.65 .50 9.31
Lin SVM 47.65 .50 9.31
CART 30.97 .569 2.37
kNN 29.37 .50 12.81
Log Reg NA .984 NA
Ridge 29.42* NA 1.24

TABLE II: Missing feature estimation results given in MSE
for continuous features and AUC for binary.

Table II first shows that, for each of the three features,
there was at least one estimator that outperformed the “carry-
forward” procedure, thus justifying the use of estimators
over the naive carry-forward procedure. Second, we observe
that ridge regression is the best performing continuous value
estimator for “hematocrit” and a very close second for “al-
cohol consumed”. Therefore, in our inverse classification ex-
periments, we used ridge regression to estimate continuous
features. Finally, we found that logistic regression was best
able to estimate the categorical feature “statin use” and thus
use logistic regression to estimate categorical features in our
inverse classification experiments.

C. Experiment 2: Risk Estimates vs. Feature Vectors

To create a temporal linkage between longitudinal datasets,
we proposed to use past risk estimates as features in future
visit datasets. To assess the viability of this method we
induce classifiers on datasets containing these features, also
inducing classifiers on datasets containing feature vectors that
are carried forward from past visits. We then compare the
predictive performance between the two methods to assess
the viability of our proposed strategy. The results of this
comparison-based experiment are presented in Figure 2.

Figure 2 shows that the predictive performance of the two
methods is incredibly similar. At v = 3, the carry-forward
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Fig. 2: Performance of classifiers induced using past risk es-
timates vs. classifiers induced using historical feature vectors,
by visit.

procedure enjoys a < .01 AUC benefit over our proposed
past risk method. Since the two methods perform virtually
identical we elect to adopt our proposed past risk method,
which provides a much more compact representation than the
carry-forward procedure (i.e., past risk represents each past
dataset as a single value, whereas the carry-forward procedure
uses the entire feature vector of each past visit).

D. Experiment 3: Longitudinal Inverse Classification

To examine the effects of longitudinal inverse classification,
we execute the inverse classification procedure in two different
ways:

a. We execute the inverse classification procedure at v = 1.
We then use these optimized D feature-values as the
D feature values at v = 2 and v = 3 and predict
their probability of CVD at each of these visits. This
represents instances’ continued implementation of their
personalized recommendation from v = 1. Additionally,
we use estimates of historical risk at v = 2 and v = 3
based on the optimized D values at v = 1. We report the
results in terms of average probability of CVD.

b. We execute the same procedure as in (a.), above, but
also apply a similar procedure at v = 2 using the newly
optimized D feature-values as the D feature-values for
the corresponding instances in the v = 3 dataset. This
represents instances’ that make initial improvements to-
ward a beneficial outcome, but then also make additional,
follow-up improvements in an attempt to further reduce
their probability of CVD. We also report these results in
terms of average probability of CVD.

Figure 3 shows the results of (a.) in black and (b.) in blue,
which can be compared to the original predicted probability
of CVD in red.

Examining the results of both (a.) and (b.) at v = 2, we
can see that both were able to reduce the average probability

Original

1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ICv=1

ICv=1 , ICv=2

A
vg

. 
P

(C
V

D
)

Visit

Fig. 3: Longitudinal inverse classification results by visit with
a budget B = 2. Red represents average probability of CVD
without applying inv. Black indicates the average probability
results after applying inverse classification at v = 1. blue
indicates the average probability results after applying inverse
classification at v = 1 and v = 2.

of CVD; the result of (b.), expressed in blue, suggests that a
second application of the inverse classification process further
reduces the average probability of CVD.

Interestingly, however, the results of (a.) and (b.) at v = 3
show that, while (a.) and (b.) kept the average predicted
probability of CVD low, their difference in average predicted
outcome is very comparable ((b.) is slightly less than (a.)).
This is surprising because it suggests that applying a sufficient
amount of initial effort to improve ones probability of a good
outcome has a comparable “long-term” effect to application
of additional CVD-mitigating effort later on, perhaps indi-
cating/reinforcing the notion that interventions are best made
earlier rather than later (by virtue of the “diminishing effect”
observed).

V. CONCLUSIONS

Cardiovascular disease is a major health concern world
wide. Personalized medicine provides an avenue by which
CVD risk can be mitigated, thus potentially improving the
health outlook for millions. Much of the on-going CVD
research on personalized medicine focuses on the discovery
of genetic biomarkers, but does not address personalized
lifestyle adjustments that may reduce CVD risk. In this work,
we proposed longitudinal inverse classification that makes
personalized lifestyle recommendations that mitigate the risk
of CVD, also addressing the sub-problems of missing features
and the creation of temporal linkages among longitudinal
datasets. We show that our proposed methods to address these
two subproblems are reasonable and that longitudinal inverse
classification can be used to reduce the long-term risk of CVD.
Furthermore, we found that personalized lifestyle adjustments
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adopted earlier are approximately as beneficial as repeated
lifestyle adjustment made over several time periods.
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APPENDIX

The following tables enumerate the variables used in this
study at v = 1.

Feature Name
Insulin (uu-ml), Height (cm), Age, Peripheral Artery

Disease, Peripheral Artery Disease (definition 2),
Plaque/shadowing in either internal, Plaque in either

internal carotid, Cholesterol lowering med (last 2
weeks), Hypertension (definition 5), Education level,
Diabetes, Age when menopause began, Menopause
status, Ever smoked cigarettes, High blood pressure
med (past 2 weeks), Agina-chest pain med (past 2
weeks), Heart rhythm control med (past 2 weeks),

Heart failure med (past 2 weeks), Blood thinning med
(past 2 weeks), Blood sugar med (past 2 weeks),
Stroke med (past 2 weeks), Walking leg pain med

(past 2 weeks), Headache or cold med (past 2 weeks),
Pain meds (past 2 weeks), Gender, Race, Years

smoked cigarettes

ST. I: Unchangeable features FU for the ARIC CVD dataset.

Feature Name: σ
BMI (Body Mass Index), Recalibrated HDL

cholesterol (mg/dl), Re-calibrated LDL cholesterol
(mg/dl),Total cholesterol (mmol/L), Total triglycerides
(mmol/L), 2nd and 3rd systolic blood pressure (avg.),

2nd and 3rd systolic blood pressure (avg.) Num 2,
Waist girth (cm), Hip girth (cm), Heart rate, White

blood count, Apolipoprotein AI(mg-dl), Apolipoprotein
B (mg-dl), Apolp(A) Data (ug-ml), Ankle-brachial

index (Def 4), FV(1)/FVC Predicted (%), FEV(1) (L),
FVC (L), Hematocrit, Hemaglobin, Platelet count,

Neutrophils, Neutrophil bands, Lymphocytes,
Monocytes, Eosinophils, Basophils, APTT Value, VIII:

C Value, Fibrinogen Value, VII Value, ATIII Value,
Protein: C Value, VWF Value, Cornell voltage (uV),

Waist-hip ratio, Vegetable fat (% kcal), Carbs (% kcal),
Alcohol (% kcal), Omega fatty acid (g), Calf girth
(cm), Subcaps measure 2 (mm), Triceps measure 2

(mm), Uric acid (mg-dl), Total protein (gm-dl), Albium
(gm-dl), Phosphorus (mg-dl), Magnesium (meq-l),

Calcium (mg-dl), Urea nitgrogen (mg-dl), Potassium
(mmol-l), Sodium (mmol-l), Creatinine (mg-dl), Weight

(lb), Total fat (% kcal), Saturate fatty acid (% kcal),
Protein (% kcal), Polyunsaturated fatty acid (% kcal),

Monounsaturated fatty acid (% kcal), Total fat (g)

ST. II: Indirectly changeable features FI for the ARIC CVD
dataset.
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c+/c−
Feature:Cost

c+
Dark or grain breads: 3, Peanut butter: 4, Nuts: 5,
Other(prunes,avocado): 5, Vegetables: 6, Fruit: 6,
Fiber: 7, Vegetable fat: 5, Polyunsaturated fat: 5

c−
Liver: 8, White carbs: 6, Fish: 9, Cereal: 4, Cigarettes:

9, Caffeine: 7, Carbs: 7, Cholesterol: 6, Sodium: 7,
Animal fat: 7, Saturated fat: 6

c+/c−
Exercise hours: 10, Alcohol: 9

ST. III: Directly changeable features FD for the ARIC CVD
dataset.


